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ABSTRACT

Backdoor attacks for point clouds have elicited mounting interest
with the proliferation of deep learning. The point cloud classifiers
can be vulnerable to malicious actors who seek to manipulate or
fool the model with specific backdoor triggers. Detecting and re-
jecting backdoor samples during the inference stage can effectively
alleviate backdoor attacks. Recently, some black-box test-time back-
door sample detection methods have been proposed in the 2D image
domain, without any underlying assumptions about the backdoor
triggers. However, upon examination, we have found that these de-
tection techniques are not effective for 3D point clouds. As a result,
there is a pressing need to bridge the gap for the development of a
universal approach that is specifically designed for 3D point clouds.

In this paper, we propose the first test-time backdoor sample
detection method in 3D point cloud without assumption to the
backdoor triggers, called Point Clouds Corruption Robustness
Test (PointCRT). Based on the fact that the corruption robustness
of clean samples remains relatively stable across various backdoor
models, we propose the corruption robustness score to map the fea-
tures into high-dimensional space. The corruption robustness score
is a vector evaluated by label consistency, whose element is the
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minimum severity level of corruption that changes the label predic-
tion of the victim model. Then, the trigger is identified by detecting
the abnormal corruption robustness score through a nonlinear clas-
sification. The comprehensive experiments demonstrate PointCRT
deals with all cases with the average AUC over 0.934 and F1 score
over 0.864, with the enhancement of 18%-28% on ModelNet40. Our
codes are available at: https://github.com/CGCL-codes/PointCRT.
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1 INTRODUCTION

With the stellar progress of deep learning, 3D point clouds arise
in a wealth of applications, like autonomous driving, augmented
reality, robotics, etc [16]. As a result, the development of robust and
efficient deep learning algorithms for 3D point clouds has become a
crucial research area. Especially, adversarial machine learning has
achieved remarkable advancements spurring an arms race between
attacks and defenses [15, 20, 48].

Meanwhile, Badnets [10] leads to the realization that the back-
door attacks (or trojan attacks) become another non-negligible
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Figure 1: An overview of PointCRT

security threat. Backdoor attacks are intended to deceive the vic-
tim model for those samples that contain the engineered trig-
ger but do not have any impact on the model’s efficacy with re-
spect to benign data. Hence, it poses a formidable obstacle for
users to discern the surreptitious insertion of a backdoor trigger
within the model [4, 12, 18, 42]. Numerous defense countermea-
sures against the backdoor attacks have been proffered in the image
domain (2, 4, 7, 39, 41]. From the various defenses against backdoor
attacks, one of the pivotal ideas is to detect the injected trigger, as
the trigger provided a shortcut that builds up a mapping between the
trigger and target label [8]. Apparently, detecting a trigger sample
at the inference stage is equivalent to removing the hazard.

Recently, the significant advances achieved by test-time back-
door detection methods have garnered widespread attention. These
methods aim to detect backdoor samples at test time (inference
stage) of the victim models and filter out the potential malicious
samples [3, 7]. In real scenarios, the defender has no prior knowl-
edge of the trigger designs or victim model structure including
the logits outputs, and no access to the training process of the
victim model, also known as the black-box setting. Lately, SCALE-
UP [13] and TeCo [29] are proposed to detect backdoor samples in
this setting and only require the hard-label outputs. Unfortunately,
these 2D image detection methods are encountering significant hur-
dles in 3D point clouds, the backdoor attack on 3D deep learning
is nascent but extremely intractable. One of the major problems
comes from the flexible representation of point clouds making
the backdoor pattern totally different from images [21]. The pixel
representation cannot be considered equal to the coordinates of
a point, let alone the image patch. Another problem is the point
cloud classifiers as they use symmetric functions to process the
unordered point clouds, leading to different designs of backdoor
triggers [9, 22, 33]. For example, some detection methods fail when
meeting transformation-based triggers like rotation [6, 21], which
will be further discussed in Sec. 5.2.

In this paper, we attempt to design a universal black-box back-
door sample detection method tailored for 3D point clouds without
any prior knowledge or assumption of the triggers and victim mod-
els. In such a strong strict setting, we are only able to obtain a
small quantity of clean data that is the same distribution as the test
dataset, which will be used to distinguish whether the suspicious
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input is stamped with a backdoor trigger, shown in Fig. 1. Under the
circumstances of restricted access, we opt to pre-process the input
samples, with the aim of highlighting the characteristic attributes of
the triggers. The resistance of point cloud backdoor attacks under
different pre-processing has been discussed in prior work [6]. How-
ever, it has only delved into basic pre-processing techniques and
no further consideration on detecting backdoor samples. On the
other hand, corruption is a more comprehensive method that can be
utilized for measuring robustness [35, 38]. The existing point cloud
corruption benchmarks have analyzed the point cloud classifiers’
robustness under various corruptions. Inspired by [11, 23, 29], we
observe that the backdoored infected models have the consistency
of corruption robustness on clean data while performing differently
on the backdoor data with different triggers. It should be further
pointed out that this phenomenon is not entirely consistent with
the observation in 2D images as the spacial backdoor pattern and
data representation in 3D point clouds [26]. Typically, the robust-
ness of backdoor samples is considered to be more robust than
benign samples in 2D images, while this relationship is much more
complex in 3D point clouds. The interaction-based triggers and
transformation-based triggers have negative and positive effects
on enhancing the robustness of the original samples, respectively.
Therefore, it cannot simply be divided by a linear separation, as
discussed in Sec. 4.2.

Based on that, we propose Point Clouds Corruption Robustness
Test (PointCRT) by applying several corruptions to point clouds
with growing severity and obtain the corruption robustness score
(CRS) via the hard-label prediction consistency. The CRS represents
resistance to the maximum severity level under different corrup-
tions, with the maintenance of the model prediction. Based on the
observation that the clean samples have stable CRS on different
backdoored models, we can determine the backdoor samples by a
(curved) hyperplane. Without consideration of the geometry, eval-
uating the corruption robustness of backdoor samples has great
advantages for transformation-based triggers that don’t change
the structure of the input. We compare PointCRT with the state-
of-the-art (SOTA) test-time detection methods proposed for 2D
images. The experiments demonstrate it is impractical to directly
apply these detection methods from 2D images to 3D point clouds,
while PointCRT can achieve remarkable results. We also validate
our method against data augmentation during backdoor training
and evaluate the transferability under unseen backdoor attacks.

In a nutshell, we make the following contributions:

e We propose PointCRT, the first test-time black-box backdoor
sample detection method for 3D point clouds, which can
detect the backdoor trigger without any assumption of the
trigger or requirement of the victim model.

o We first observe the discrepancy influence on the robustness
of backdoor samples between interaction-based triggers and
transformation-based triggers.

o Extensive experiments on multiple 3D point clouds bench-
mark datasets delineate that our approach achieves superior
performance in detecting backdoor attacks.

e We find that using transformation-based backdoor samples
for PointCRT’s training has good transferability and effec-
tiveness in detecting other unseen backdoor attacks.
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Figure 2: An illustration of one clean sample (first row) and four backdoor samples under corruptions, i.e., radial basis function
(RBF)-based distortion and density with the severity levels of 1,3,5. Although the backdoor samples implanted by PointBA-O
and IRBA have similar structures to the clean one, the geometry is still changed slightly or dramatically after corruption.

2 RELATED WORK

2.1 Adversarial Attacks and Defenses on 3D
Point Cloud

The first adversarial attack algorithm in 3D point clouds is proposed
in [48], which have inspired several adversarial attack methods such
as point shifting [24-26, 30, 45], point adding [51] and point drop-
ping [53, 54]. The rotation-based attack reveals the vulnerability
of the point cloud classifiers to isometry transformations [43, 52].
AdvPC [15] creates transferable adversarial examples which can
exploit the data distribution. Si-Adv [19], as the first query-based
black box attack in point clouds, limits displacement of the point
on its tangent plane. PointCA [17] is the first adversarial attack
against 3D point cloud completion, which indicates the potential
harm of adversarial samples in other tasks.

To defend against the above attacks, DUP-Net [54] using the Sta-
tistical Outlier Removal (SOR) module and upsampling technique
has strong robustness to adversarial examples. Simple Random
Sampling (SRS) is used to drop potential adversarial points [51].
Other countermeasures including adversarial training [26, 36, 43],
data augmentation, and certified robustness [27, 46], have achieved
stellar progress. Recently, PointDP [37] uses the diffusion model to
purify adversarial examples and still maintain satisfactory robust-
ness even under strong adaptive attacks.

2.2 Backdoor Attacks on 3D Point Cloud

PCBA [49] implants the backdoor trigger by inserting a cluster of
points into the appropriate optimized location near the point cloud.
Meanwhile, PointBA [21] designs two methods for embedding the
triggers, PointBA-I and PointBA-O respectively. PointBA-I also uses
an interaction trigger pattern implanting a ball with a fixed radius
and place. PointBA-O alters the orientation of the point clouds by
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rotation without changing the structure of the original point clouds.
Besides, the authors extend them to the clean label backdoor attack
via the feature disentanglement. With multiple trigger-embedding
modules, Poisoning MorphNet [40] follows the clean label backdoor
setting generating the sample-adaptive triggers hidden in the high-
frequency domain. Considering the robustness to pre-processing
technique, IRBA [6] uses the nonlinear and local transformation to
obtain a sample-adaptive trigger, which shows resistance to several
pre-processing. Recently proposed NRBdoor [5] is the first uniform
trigger generation method that can adapt for both point cloud and
3D mesh based on rotation and adding noise.

2.3 Backdoor Defenses on 2D image

Fine-Pruning represents the most straightforward way to alleviate
the damage of backdoor attacks, albeit at the expense of clean accu-
racy [28]. Nevertheless, the process of purifying the backdoor sam-
ples may necessitate intricate operations and pristine data, which
can be unacceptable in the real scene. Activation clustering [2] is
proposed for detecting training data and filtering trigger samples.
However, access to the model by the defender may be impeded due
to various reasons, including but not limited to property rights pro-
tection. STRIP [7] is the first black-box detection method without
access to the victim model, while it requires the logits outputs to
calculate the entropy. SCALE-UP [13] and TeCo [29] are the latest
test-time backdoor trigger detection methods in total black-box
settings. Different from previous works, both of them use label
consistency to determine the backdoor samples and clean samples
from the perspectives of amplification effects and robustness to
image transformations. Unfortunately, with overreliance on the
structure of the backdoor pattern, these backdoor defenses for the
2D images domain generally are not suitable for point clouds [3].
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It should be noticed that the defense in [50] is used to detect
whether the classifier is backdoor infected which is not the topic
discussed in this work. Accordingly, it is urgently desired to propose
a black-box detection scheme for 3D point clouds requiring zero
knowledge about the backdoor trigger pattern and victim model.

3 PRELIMINARIES

Our problem can be formulated as follows, let fy : X — y be a 3D
point cloud classifier parameterized by 6. Here, X € R™ 3 is the 3D
point cloud space, the point cloud X = {x; e R3|i=1,--- ,n} € X
where x; is the coordination of the i-th point in point cloud and y =
{1,---,C}. Given a model trainer who wants to train a point cloud
model for the classification task, there is an adversary who mounts
the backdoor attack by substituting a poisoned set D), for a small
fraction of the training dataset without the model trainer being
aware of it. D) = {(Xi,y)li = 1,---, M}, where X; = T(X;) is
the point cloud implanted with a well-designed trigger 7 (-) and
y; is the preset target label. The remaining part of training dataset
forms the clean dataset D, The backdoor attacker’s goal is to
generate a special trigger that makes the victim model trained on
the poisoned dataset predict the specified target label on any input
with the trigger, but perform normally on clean samples. The model
trainer will get a backdoored model by solving:

mn > LB+ Y L) 0

(X.y)eD, (X.y1)eD,

where L (-, -) denotes the loss function.

As the defender, we attempt to find out a backdoor detection
method M to distinguish the backdoor samples from clean samples
on a backdoored model fé. Here the test time detection method M
can be obtained by the following objective function:

M= arg;[nax Exep, [(M(X, f3) = 0) + (M(T (X), f3) = 1)]
)
4 CORRUPTION ROBUSTNESS TEST

4.1 Corruption Robustness in Point Cloud

Several point clouds robustness benchmarks have been proposed,
ModelNet40-C [38], ModelNet-C [35], and Pointcloud-C [35]. These
benchmarks use different corruptions with several severity levels
to evaluate the robustness of models. In the same way, we can use it
to evaluate the corruption robustness of a point cloud by measuring
the model’s prediction. This leaves a question to us that whether
point clouds with the backdoor trigger are consistent with the clean
point clouds in corruption robustness given a backdoored model. It is

the backdoor trigger that links backdoor samples and target labels.

When the backdoor trigger is destroyed by certain corruptions,
the backdoor sample will be more or less robust than the benign
sample. For example, the rotation triggers are easily destroyed by
corruptions based on the input coordinates, the backdoored models
will classify the corrupted samples normally.

To explore this further, we visualize one of the samples with the
two corruptions used in ModelNet40-C. We compare the benign
sample with backdoor samples generated by four popular backdoor
attacks [6, 21, 49] in point clouds. As we can see in Fig. 2, the first
row represents the shape changes of a benign sample without any
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implanted trigger after applying various corruptions, provided as
a reference. The remaining four rows show backdoor samples im-
planted with various trigger patterns under corruption. Although
transformation-based triggers in the last two rows show good im-
perceptibility, the geometric shapes of the backdoor samples still
undergo significant alteration under corruptions with high sever-
ity levels. Given a backdoored model, we conjecture that there is
a robustness gap between the benign samples and the backdoor
samples under different corruptions.

4.2 Evaluation on Corruption Robustness

To further investigate the above assumption, we conduct the Cor-
ruption Robustness Test on a victim model under 4 backdoor at-
tacks [6, 21, 49]. Given a point clouds classifier, Corruption Robust-
ness Test imposes a corruption set cy, consisting of K corruption
types with N severity levels to the input data, then computes the
clean accuracy (ACC) for the clean samples and the attack success
rate (ASR) for the samples with the trigger. We utilize 75 corrup-
tions (15 types with 5 severity levels) in [38] to the victim model
by 4 different backdoor attacks. As shown in Fig. 3, the shapes
and downward trends of these figures differ from one another. We
can conduct a rough analysis that the backdoor samples present
different corruption robustness with the different types of triggers.
The curves of transformation-based triggers, PointBA-O and IRBA
have similar shapes but drop steadily compared with the clean sam-
ples, which indicates the backdoor sample is more robust than the
normal sample from an overall perspective.

Nevertheless, all models show similar performance for the clean
point clouds in Fig. 4. Due to the striking resemblance in the shape
of the clean samples’ ACC curve between models implanted with
various backdoor triggers, we can infer that the corruption ro-
bustness of clean data remains stable within a specific range,
irrespective of trigger modifications, whereas samples out-
side this range can be considered as backdoored. The triggers
generated by different backdoor attacks have a profound influence
on the corruption robustness of the backdoor samples. Once we are
capable of extracting the range of this interval through an algorith-
mic approach, we can detect all backdoor attacks ideally. Based on
that observation, we can distinguish between the backdoor samples
and clean samples by comparing the corruption robustness. In the
meanwhile, it should be emphasized that this is different from the
findings in 2D images. Previous works [7, 23, 29] map the backdoor
sample to linearly separable space, as the samples with the trigger
are normally more robust than benign samples. However, we have
analyzed that interaction-based triggers in point clouds show poor
robustness to the most corruptions, the transformation-based trig-
gers enhance the robustness slightly. As a consequence, we need to
solve this problem in terms of nonlinear classification.

4.3 Corruption Robustness Score

From the above observation, we are going to figure out an algorithm
to represent the distinct characteristic of corruption robustness. We
are only capable of obtaining the hard-label output of the model,
it also ought to be recognized that the ACC (ASR) is calculated
for the whole dataset via comparison between the model output



PointCRT: Detecting Backdoor in 3D Point Cloud via Corruption Robustness

MM 23, October 29-November 3, 2023, Ottawa, ON, Canada

—®- Background
100 101 Cutout
Density
e ~e- Density Inc
80 \ 8o Distortion
3 —e- Distortion Rbf
60] % 60 —e- Distortion Rbf Inv
% e = Gaussian
< W < -®- Impulse
40 5 40 Original
e . = Rotation
20 [ S S S 20 -®- Scale
e Shear
O N i Ty Uniform
7 1 2 3 4 5 0 ~®- Upsampling
Severity Severity Severity Severity Ufsampling
(a) PCBA (b) PointBA-I (c) PointBA-O (d) IRBA

Figure 3: The backdoored PointNet’s attack success rate (ASR) for the backdoor sample in ModelNet40 with 4 different backdoor
attacks under 15 common corruptions. The four curves have different shapes illustrating that different corruptions can destroy

the triggers making ASR descend in different trends.
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Figure 4: The backdoored PointNet’s accuracy (ACC) for the clean samples in ModelNet40 under 15 common corruptions. The
curves are similar to each other, as the inputs are clean without triggers.

and the ground truth (target label), which cannot be available for a
suspicious sample.

So we propose corruption robustness score (CRS) as the mini-
mal severity that each corruption changes the model prediction to
represent the model’s robustness to certain corruption C;:

CRS)(X) = arg min(fy-(CF (X)) # fy- (X))

s=1,---,N
i=1---,K

®)

s.t.

where fp- is the black-box model. The higher the value is, the more
robust the input is to the corruption C;. It should be underscored
that Eq. 3 compares the changes of predicted labels of a sample
before and after applying corruption, thus enabling us to solely
consider individual samples without requiring other information.
The meaning of this formula is equivalent to exploring the slope
trends of ACC and ASR, while also providing a more comprehen-
sive evaluation of the robustness of an individual sample under
corruptions. After applying all corruption in the set, we can ob-
tain CRS(X) = {CRS;(X)|i = 1,---,K}, a K-dimension vector. We
can represent the aforementioned observation using the following
formula:

d(CRS(‘T(X)), CRS(X))

4

where d is a distance function. However, the issue lies in the fact that
the threshold value y is dependent on the sample X and the type
of backdoor trigger 7 (-), it is not a fixed value. Therefore, we pro-
pose using a binary classifier to directly classify high-dimensional
vectors instead of calculating the threshold value for each sample.
We feed the CRS vector to a binary classifier 8 for the final judg-
ment. Then it can determine the sample with the confidence p if

>y
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B(CRS(X) > p) return 1, regard it as a backdoor sample, or we
will regard it as a clean sample.

5 EXPERIMENTS
5.1 Experiment Setup

Datasets and models. We conduct our experiments with clas-
sic benchmark datasets, ModelNet10 [47], ModelNet40 [47], and
ShapeNetPart [1]. ModelNet40 includes 12,311 CAD models from 40
categories, with the split into 9,843 for training and 2,468 for testing.
The ModelNet10 is a subset of the ModelNet40 with 10 categories.
ShapeNetPart contains 16 categories splitting into 12,128 and 2874
objects for training and testing, respectively. All datasets are sam-
pled into 1024 points uniformly and normalized to [-1, 1]. The victim
models include PointNet [33], DGCNN [44], PointNet++ [34], part
experiments on CurveNet [32], PCT [14], and Simple View [9].
Implementation details. In this paper, we will adopt 15 corrup-
tions introduced in ModelNet40-C [38] for practical. The 15 corrup-
tions have 5 levels of severity and cover the majority of distortion
cases. In order to fully test the robustness of 3D point cloud, we
modified the original parameters in ModelNet40-C. We choose the
XGBoost (Extreme Gradient Boosting) as our binary classifier. The
clean data used for training the binary classifier are collected from
the test set and the default sampling ratio is fixed to 10% (e.g., 99
clean samples in ModelNet10, 246 in ModelNet40, 286 in ShapeNet-
Part) without specific mentioned.

Baselines. In this paper, we focus on the test-time backdoor de-
tection in the black-box setting where defenders can only obtain
the hard label of the victim model predictions. The competitors are
the latest published methods, SCALE-UP [13], TeCo [29], and we



MM °23, October 29-November 3, 2023, Ottawa, ON, Canada

Shengshan Hu et al.

Table 1: The experiment results on different backdoor attacks, datasets, and models. The last column represents the average
performance of a single model under all backdoor attacks. “AVG” stands for the average performance of all backdoor attacks.

Dataset Model Attack(—) PCBA Pointba-I PointBA-O IRBA AVG
Method(]) F1 score AUC F1 score AUC F1 score AUC F1 score AUC F1 score AUC
STRIP 0.961 0.536 0510 0.000 0510 0.283 0510 0.286 0.623 0.276
SCALE-UP 0.961 0.412 0.556 0.548 0.885 0.911 0,510 0.453 0.728 0.581
PointNet TeCo-3D 0474 0.201 0.496 0.499 0.597 0.803 0.560 0.672 0532 0.544
Ours 0.963 0.839 0.977 0.997 0.816 0.878 0.781 0.840 0.884 0.888
STRIP 0.961 0373 0510 0.217 0510 0.142 0510 0.113 0.623 0211
SCALE-UP 0.961 0.412 0.974 0.979 0.544 0.534 0.566 0.558 0.761 0.621
ModelNet40 DGCNN TeCo 0.537 0.215 0.614 0.861 0.552 0.675 0.576 0.739 0570 0.622
Ours 0.961 0.759 0.996 1.000 0.808 0.870 0.844 0.914 0.902 0.886
STRIP 0.961 0.170 0510 0.000 0510 0.211 0510 0.173 0.623 0.139
SCALE-UP 0.961 0.468 0.698 0.696 0.605 0.598 0.652 0.646 0.729 0.602
PointNet++ TeCo-3D 0.552 0.277 0.658 0.939 0.614 0.869 0.638 0.906 0.615 0.748
Ours 0.961 0.820 0.989 0.999 0.876 0.939 0.937 0.979 0.941 0.934
STRIP 0.948 0391 0526 0.000 0.563 0.390 0.526 0.405 0.641 0.297
SCALE-UP 0531 0535 0.836 0.899 0.526 0.344 0.526 0.394 0.605 0.543
PointNet TeCo 0351 0.607 0.628 0.966 0.530 0.659 0.579 0.845 0.522 0.769
Ours 0.971 0.970 0.987 0.992 0.859 0.917 0.890 0.940 0.927 0.955
STRIP 0.948 0.425 0.606 0.632 0.526 0.276 0.526 0.159 0.652 0373
SCALE-UP 0.658 0.686 0.688 0.737 0.554 0.460 0.620 0.619 0.630 0.626
ShapeNetPart DGCNN TeCo-3D 0.340 0.342 0.561 0.836 0.574 0.819 0551 0.773 0506 0.692
Ours 0.989 0.994 0.992 0.999 0.918 0.957 0.907 0.957 0.952 0.977
STRIP 0.948 0.633 0.526 0.000 0.557 0.542 0.526 0.424 0.639 0.400
SCALE-UP 0.948 0.804 0.952 0.957 0.799 0.875 0.893 0.935 0.898 0.892
PointNet++ TeCo-3D 0.379 0.774 0.641 0.939 0.581 0.829 0.603 0.888 0551 0.857
Ours 0.989 0.992 0.962 0.989 0.932 0.980 0.943 0.980 0.956 0.985
Table 2: The characteristics of the evaluated backdoor attacks computed by:
PCBA  PointBA-I PointBA-O IRBA 2 x (precision x recall)
- F1 score = — (5)
Interaction v v precision + recall
Transformation v v Several TPRs and FPRs under different thresholds are used to cal-
Sample-specific v culate the AUC, we choose the max F1 score at the same time.

also compared the STRIP [7] which needs more the logits outputs.
We modify them to tailor for 3d point clouds, e.g., turning TeCo to
TeCo-3D.

Attack settings. Four backdoor attacks are launched to evaluate
our defense method, i.e., PCBA [49], PointBA-I [21], PointBA-O [21],
and IRBA [6], as shown in Table. 2. All attack methods follow the
settings in [6], and the injection ratio is 0.05 of the whole training
set. In particular, PCBA requires a (source, target) class pair, we
choose (“Night stand”, “Table”) in ModelNet10, (“Chair”, “Toilet”) in
ModelNet40, and (“Guitar”, “Lamp”) in ShapeNetPart. What’s more,
we conduct it as all-to-all attack additionally to simulate the worst
scenario that all classes are facing the threat to be stamped triggers,
shown in Sec 5.3.

Evaluation metrics. To evaluate the performance of detection
method, we use two types of evaluation metrics: F1 score and Area
under Receiver Operating Characteristic Curve, short for AUC, which
are widely used in binary classification. With false positive rate
(FPR) for the clean samples as the horizontal axis and true positive
rate (TPR) for the backdoor samples as the vertical axis, the Receiver
Operating Characteristic Curve (ROC) curve can be delineated. The
closer AUC is to 1, the better the detection method is to distinguish
the backdoor sample and the clean sample. The F1 score can be
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5.2 Performance Evaluation

In Tab 1, we evaluate the performance of PointCRT under different
backdoor attacks, datasets, and models!. From the table, we can
see PointCRT can achieve remarkable performance in most cases
with the average AUC over 0.938, far surpassing other methods.
Here, the SOTA test-time detection methods in 2D images fail
to detect backdoor samples in 3D point clouds. The main reason
for the unsatisfactory performance of these methods is the data
representation gap between 2D images and 3D point clouds. Firstly,
STRIP aims to use different clean samples as watermarks to block
the possible trigger in 2D images, while in the context of three-
dimensional Euclidean space, point clouds exhibit sparsity, which
results in gaps when directly overlaying them with one another. The
trigger pattern is relatively diminutive compared to point cloud and
is less likely to be occluded. Secondly, the postulation in 2D images
is not universally applicable to 3D point clouds. Both SCALE-UP
and TeCo exhibit significant fluctuations in detection performance
across different datasets. In contrast, PointCRT outperforms them
and is capable of achieving excellent F1 and AUC scores in almost
all circumstances.

!During our experiments, we found SimpleView and PCT are robust to backdoor
attacks on certain datasets. For example, the PCBA is not strong enough to implant
trigger on them, which makes the trigger ineffective and hinders to evaluate.
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Figure 5: Illustrations of PointCRT’s performance with dif-
ferent clean samples

Table 3: The comparison of all-to-all attack on ShapeNetPart

Model PointNet DGCNN PointNet++
Method Flscore AUC Flscore AUC Flscore AUC
SCALE-UP 0.500 0.380 0.500 0.248 0.500 0.341
Ours 0.888 0.943 0.951 0.984 0.929 0.977

5.3 Ablation Study

Performance on different numbers of clean data. We investi-
gate PointCRT’s performance under different sampling ratios on
clean dataset. We illustrate two types of classic triggers’ results on
ModelNet40 in Fig. 5. For PointBA-I, we choose SimpleView as the
victim model, and for PointBA-O, we select PointNet. It should be
highlighted that in extremely small quantities of clean data (e.g.,
only 12 clean samples in ModelNet40 for PointBA-I), PointCRT
still achieves AUC > 0.82. In the end, we strike a balance between
performance and data requirements by setting the sampling ratio
of test datasets to 10%, which proves to be effective in meeting our
desired outcome.

Performance against all-to-all attacks. As PCBA launches the
attack by source-target pair, it is possible for us to mount the all-to-
all attack. In this part, we are going to explore the worst case that
all classes are embedded with backdoor trigger. We perform the
experiment on ShapeNetPart and the target label is set by turning y;
to y; + 3. From the Table. 3, SACLE-UP is completely incapacitated
and even starts making the opposite decisions, while PointCRT is
still able to maintain its performance.

Resistance to data augmentations. We consider a possible situa-
tion that corruption is used for data augmentation in the backdoor
training. In this experiment, we apply data augmentation by ran-
domly applying corruption to the sample during training. As shown
in Table. 4, there is no significant degradation in the performance,
PointCRT shows effective resistance to data augmentation.
Transferability to unseen attacks. We explore the transferability
of PointCRT to unseen attacks after the XGBoost is trained on the
known attack. To simplify, we use the backdoor detection rate (BDR)
as the metric to measure the detecting performance of PointCRT.
Fig. 6 shows the method on PointNet++ is transferred to detect the
corresponding attack in the same row. For example, the first row in
Fig. 6(b) means the victim model is attacked by PCBA, PointCRT
detects PCBA’s backdoor samples with the BDR of 0.99, while it
only has about 0.54 facing other unseen attacks . To this end, we
believe using transformation-based backdoor attacks as the basic
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Figure 6: Transferability of PointCRT on unseen backdoor
attacks

Table 4: The results of PointCRT on PointNet++ using data
augmentations

Dataset ModelNet10 ModelNet40 ShapeNetPart
Attack F1score AUC Flscore AUC Flscore AUC
PCBA 0.924 0.906 0.961 0.805 0.977 0.972
Pointba-I 0.981 0.998 0.949 0.987 0.969 0.995
PointBA-O 0.898 0.953 0.843 0.911 0.910 0.968
IRBA 0.791 0.837 0.831 0.905 0.938 0.987

method is capable of effectively handling the majority of 3D point
cloud backdoor attack scenarios that arise in real-world situations.

5.4 Performance on real dataset

KITTI Vision Benchmark Suite [31] is one of the most famous
real benchmarks used for autonomous driving. Here, we add our
experiment of detecting PCBA on KITTI following PCBA’s original
setting. What’s more, we evaluate the performance with different
metrics to demonstrate the overall capacity of our approach, e.g.,
precision and the False Acceptance Rate (FAR). From Table. 5, we
can see PointCRT is still able to detect the backdoor samples with
average AUC over 0.94. This is reasonable as CRS does not consider
the feature of datasets, but rather focuses on the label consistency
of individual samples to evaluate their corruption robustness. The
experiment results verify our previous observation that the clean
sample’s corruption robustness is stable on real datasets.

Table 5: The performance of PointCRT detecting PCBA on
KITTI dataset

Model F1score(T) AUC(T) Precision(T) FAR(])
PointNet 0.850 0.900 0.856 0.141
DGCNN 0.961 0.982 0.979 0.019

PointNet++ 0.951 0.951 0.953 0.047

6 DISCUSSION
6.1 Detecting the Backdoored Models

We start by investigating PointCRT on detecting adversarial ex-
amples. Adversarial examples are generated by JGBA [30] in Mod-
elNet40, the target label is the same as the all-to-all attack exper-
iment’s setting y; to y; + 3. All adversarial examples and benign
samples apply the corruptions under the default settings as before.
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Table 6: The results of PointCRT’s performance under different combinations of corruptions. “w/o density” means dropping

the density group from the corruption sets.

PCBA PointBA-I PointBA-O IRBA AVG
Corruption Group F1score AUC Flscore AUC Flscore AUC Flscore AUC Flscore AUC
3 (select 1 per group) 0.946 0.818 0.901 0.951 0.765 0.793 0.891 0.928 0.876 0.873
6 (select 2 per group) 0.956 0.879 0.949 0.988 0.850 0.901 0.913 0.959 0.917 0.932
9 (select 3 per group) 0.955 0.918 0.967 0.993 0.869 0.930 0.914 0.966 0.926 0.952
w/0 density 0.954 0.903 0.949 0.988 0.849 0.910 0.887 0.942 0.910 0.936
w/0 noise 0.947 0.860 0.959 0.991 0.855 0.912 0914 0.962 0.919 0.931
w/o transformation 0.959 0.899 0.970 0.993 0.868 0.928 0.927 0.961 0.931 0.945
all 0.961 0.918 0.979 0.997 0.878 0.940 0.927 0.973 0.936 0.957

Severity: 1(AUC: 0.735, F1: 0.681)
Severity: 2(AUC: 0.854, F1: 0.778)
" — Severity: 3(AUC: 0.953, F1: 0.911)
Severity: 4(AUC: 0.982, F1: 0.957)
Severity: 5(AUC: 0.990, F1: 0.965)

Severity: 1(AUC: 0.773, F1: 0.958)
Severity: 2(AUC: 0.890, F1: 0.955)
+"" — Severity: 3(AUC: 0.941, F1: 0.965)
Severity: 4(AUC: 0.972, F1: 0.969)
Severity: 5(AUC: 0.976, F1: 0.969)

True Positive Rate

True Positive Rate
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02
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(a) CurveNet/PCBA (b) PCT/PointBA-I

Figure 7: Comparison of PointCRT’s performance under dif-
ferent maximum severity. The performance improves as the
maximum severity N increases.

In the end, the PointCRT fails in this toy example, the F1 score and
AUC both are 0.5, which means the classifier is random guessing.

The core concept is that in backdoor models, the mapping from
trigger to target label is usually stronger than in normal samples.
Therefore, a normal model without a backdoor implant can not
distinguish between malicious and normal samples, which can
explain why PointCRT fails in detecting adversarial examples.

So to detect whether the suspicious model is backdoored, we can
obtain the CRS by feeding a clean sample to the suspicious model,
and use a pre-trained binary classifier to make a decision. If the
suspicious model is not compromised, the classifier may misclassify
it as a backdoor sample with the confidence of approximately 50%,
but if the model is actually backdoored, the classifier would identify
it as a clean sample correctly.

6.2 The Option of Corruptions

One important question still remains to be answered, i.e., can we
choose the corruption set arbitrarily? We will answer this question
from two perspectives, corruption levels of severity and corruption
types.

Firstly, we set up the maximum severity ranging from 1 to 5. For
the sake of fairness, we choose a combination with a relatively close
attack success rate for backdoor attacks and victim model pairs
on ShapeNetPart. As shown in Fig. 7, it consistently demonstrates
good performance even at low N values.

Secondly, these corruptions represent different kinds of point
cloud attributes as mentioned in [35], and can be grouped into 3
categories: density patterns, noise patterns, and transformation pat-
terns. We randomly selected different combinations of corruptions
and investigate these combinations groups on PointNet++ under
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4 backdoor attacks. As demonstrated in Table. 6, the quantity of
corruption presents a noteworthy impact on PointCRT’s efficiency,
while the types of corruption exhibit feeble influence. We hypothe-
size that the certain corruptions may have the equivalent impact on
a given backdoor sample, rendering the effect of these corruptions
redundant and unable to fully demonstrate robustness, leading to
fluctuations in performance.

It is worth noting that, the computational cost of PointCRT is
highly related to the above corruptions types K and the max severity
level N. Hence, we hold the opinion that excavating unknown
corruption serving as a substitute for the part of corruption sets
can elevate PointCRT’s performance and efficiency.

7 CONCLUSION

In this paper, we propose PointCRT, the first scheme on black-box
backdoor sample detection for 3D point clouds. Via applying dif-
ferent corruptions on the inputs, PointCRT evaluates the input’s
corruption robustness and detects the backdoor samples by their
abnormal corruption robustness without any prior knowledge of
the trigger patterns. Our experimental results demonstrate the effec-
tiveness of our approach in detecting backdoor attacks in 3D point
clouds, addressing the challenges posed by unique and sparse data
formats and the imperceptibility of transformation-based triggers.

8 LIMITATIONS AND FUTURE WORKS

When the trigger implants to the victim model badly, the detection
performance of PointCRT is also not good. We believe further in-
vestigation should be focused on better performance in all cases
in the future. Similar to previous methods that require obtaining a
threshold through clean data, PointCRT also requires clean samples
as a reference. Our next step is to explore how to purify the detected
backdoor samples by corruptions to make full use of the dataset
without clean data.
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